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Abstract

Geometrically non-linear and linearized equations in the theory of momentless shells are set up based on the kinematic relations in
[Paimushin VN, Shalashilin VI. Relations of the theory of deformations in the quadratic approximation and problems of constructing
refined versions of the geometrically non-linear theory of laminar structural components. Prikl Mat Mekh 2005; 69(5): 861–81].
The use of these equations, unlike in the case of the well-known equations, enables one to avoid the occurrence of spurious
bifurcation points in solving real problems. Non-classical problems of the stability of cylindrical shells under an external pressure,
axial compression and torsion are considered, which can be formulated on the basis of the derived equations of the theory of
momentless shells. Their exact analytical solutions are found and enable one to estimate the quality of the previously obtained
relations [Paimushin VN, Shalashilin VI. Relations of the theory of deformations in the quadratic approximation and problems
of constructing refined versions of the geometrically non-linear theory of laminar structural components. Prikl Mat Mekh 2005;
69(5): 861–81] and the richness of content of the equations which have been constructed compared with well-known equations in
the mechanics of thin shells. It is established that the majority of the new forms of loss of stability of cylindrical shells which are
revealed relate to a number of shear forms, the onset of which is possible before the flexural forms which have been well studied
up to now, in the case of small values of the shear modulus of a shell material with a very highly pronounced anisotropy in its
properties.
© 2006 Elsevier Ltd. All rights reserved.

1. Consistent geometrically non-linear and linearized equations of the theory of momentless shells

Assuming that the middle surface of a shell � is referred to its lines of principal curvature x1 and x2, we will introduce
the following notation: A1 and A2 are Lamé parameters, e1, e2 and m are the unit vectors of the tangents and normal to
�, k1 and k2 are the curvatures of the coordinate lines and u = u1e1 + u2e2 + wm is the vector of the displacements
of points of �.

In this notation the tensile deformations �i and the shear deformation sin�12 are calculated in a consistent quadratic
approximation1 using the formulae

(1.1)
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(1.2)

where

(1.3)

The following expression for the variation in the potential energy of deformation corresponds to the above kinematic
relations

where (T21 ≡ T12)

(1.4)

(1.5)

We will assume that the edge of the shell coincides with the coordinate lines xi = xi−, xi+(i = 1, 2), the boundary forces

(1.6)

are specified on them and that the surface forces, specified by the vector

(1.7)

are applied to points of the surface �. According to the principle of virtual displacements, a variation in the work done
by these forces and the variation �U must satisfy the equation �U − �A = 0, which, after the traditional transformations,
reduces to the form

(1.8)

The equilibrium equations

(1.9)

for which the boundary conditions are formulated from the conditions that the contour integrals in Eq. (1.8) are equal
to zero, follow from this.

It should be noted that all these equations only differ from the well-known equations (see Ref. 2, for example) in
the expressions for S11 and S22 (1.4), which are consistent with the kinematic relations (1.1) and (1.2).

If the shell material is linearly elastic, then the forces T11, T22, T12 appearing in relations (1.4) and (1.5) are associated
with the deformations (1.1) and (1.2) by elasticity relations of the form (using the generally accepted notation)

(1.10)
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where B11 = E1t/(1 − �12�21), B22 = E2t/(1 − �12�21) and B12 = G12t are the corresponding stiffnesses and t is the thick-
ness of the shell.

We will now consider two equilibrium states of a shell. Suppose the first of them, the unperturbed state, is charac-
terized by the forces T 0

11, T
0
22, T

0
12. On introducing the standard assumption that, in the first state, the shell is stressed

but not deformed, linearizing the non-linear equations which have been setup in the neighbourhood of the unperturbed
state and retaining the earlier notation for the parameters of the stress-strain state (SSS) of the perturbed state, the
following linearized equations for the perturbed state can be set up

(1.11)

in which

(1.12)

and, unlike relations (1.10),

(1.13)

2. Shear and other non-classical forms of loss of stability of a circular cylindrical shell acted upon by
external pressure, axial compression and torsion

In the case of a cylindrical shell of radius R referred to axial coordinates (x1 = x) and peripheral coordinates (x2 = �),
we have

In the case of the above-mentioned forms of loading, the linear equations of the momentless theory yield the solutions

(2.1)

where p is the external pressure and p11 and p12 are the linear axial compressive and torsional forces on the ends of
the shell.

In the case being considered, formulae (1.3), on introducing the notation u1 = u, u2 = v, take the form

(2.2)

and, substituting into relations (1.13), we obtain

(2.3)

In accordance with relations (2.1), we now consider the three forms of distinct loading of a shell.
External pressure (T 0

11 = T 0
12 = 0, T 0

22 = T 0
� = −pR). Since, in our case,

(2.4)

Eqs. (1.11) then take the form

(2.5)

Eliminating Tx� from the first equation, we obtain

(2.6)
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When account is taken of the equality T� = 0, it follows from the physical relations (2.3) that

(2.7)

We will first consider the case when the shell retains an axi-symmetric form in the perturbed state, that is, when the
unknowns in Eqs. (2.5) and (2.7) are solely functions of x. Relations (2.5) and (2.7) then reduce to the following two
equations (a prime denotes differentiation with respect to x)

(2.8)

The second equation has the general solution

The occurrence of adjacent forms of equilibrium when v �= 0, i.e. bifurcation of the solution becomes possible when

(2.9)

At the same time, different forms of loss of stability (FLS) are possible depending on the condition for the clamping
of the edges. If the edges are clamped such that peripheral displacements are eliminated v(0) = v(L) = 0, then

(2.10)

In this case, the middle section of the shell (x = L/2) is rotated with respect to the ends through an angle c1/R. However,
in the case of ends which are fixed in the peripheral direction (v′(0) = v′(L) = 0)

(2.11)

In the case of this form of loss of stability, one of the ends rotates with respect to the other through an angle 2c2/R.
The above form of loss of stability of a shell is explained by the special features of the behaviour of the load, which

preserves its direction during perturbations, that is, it ceases to be normal to the shell surface. Loads of this form are
shown in Fig. 1 by the solid arrows in the unperturbed state and by the dashed arrows in the perturbed state, which
corresponds to a peripheral displacement v. In the case of such a load, a peripheral component pv/R appears in the
perturbed state. An element of a shell dx·Rd� is shown in Fig. 2, and it follows from the condition for the equilibrium
of this element in projections onto the peripheral direction that

Fig. 1.
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Fig. 2.

It can be seen from relations (2.7) that Tx� = B12v
′ in the case of this deformation. As a result, we arrive at the second

equation of (2.8)
We will now investigate the case when

(2.12)

We shall initially consider the case when U, V and W are constant with respect to x. It then follows from the second
and third equations of (2.5) that

From relations (2.7) we obtain that Tx� = B12u, �/R. Hence, the first equation of (2.5) reduces to the equality

The expression for the critical pressure

(2.13)

follows from this.
The corresponding form of loss of stability when the ends of the shell are clamped such that W = V = 0 is shown in

Fig. 3a.
In the general case, when U, V and W are variable, we obtain from relations (2.7) that

Since T� = 0, it then follows from expressions (2.3) and (2.12) that

(2.14)

Equations (2.5) therefore reduce to the form

(2.15)
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Fig. 3.

Subject to the condition that

(2.16)

the first equation of (2.15) has the non-trivial solution

(2.17)

when

(2.18)

In this case, it follows from equality (2.14) that

(2.19)

The corresponding form of loss of stability is shown in Fig. 3b. A similar form of loss of stability was discovered
previously3 when analysing the stability of a strip.

The second equation of (2.15) also has a non-trivial solution U �= 0 for V = 0 when

(2.20)

But, since �12 < 1, then p
(4)∗ < p

(2)∗ and this form of loss of stability cannot be realized.
Uniform axial compression (T 0

11 = T 0
x = −q, T 0

22 = T 0
12 = 0). In this case, Eq. (1.11) take the form

(2.21)

We shall confine ourselves to considering the cases when the functions have zero variability in the peripheral
direction, that is, when

(2.22)

Together with the last relation of (2.3), the second equation of (2.21) then takes the form

and, from this, we obtain the equation

which has a non-trivial solution when

(2.23)

In the case of such a form of loss of stability, if one of the ends of the shell is fixed, such that peripheral displacements
are eliminated, then the other end rotates relative to it while remaining parallel to it. This form of loss of stability is
analogous to the shear loss of stability of a strip under uniform transverse compression only, in this case, the strip
would be wrapped into a ring.

The first and last equations of (2.21) reduce to the form

(2.24)
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When account is taken of the equilibrium of the shell in projections onto its axis, it follows from the first equation
of (2.24) that Tx = 0. It therefore follows from the first relation of (2.3) that u,x = −�21w/R. Then, from the second
relation of (2.3), we obtain

and the second equation of (2.24) takes the form

(2.25)

This equation shows that related forms of equilibrium of the type

(2.26)

appear in the case of a shell when

(2.27)

This result is easy to understand if one considers the stability of a momentless bar on an elastic Winkler base, an
element of which in the perturbed state is shown in Fig. 4a, and the peripheral forces play the role of the forces of
interaction between the bar and the base. It follows from the condition for the element to be in equilibrium that

Here � is the coefficient of the bed of the base. Related forms of equilibrium (2.26) occur when

(2.28)

If we consider an elementary longitudinal strip of a momentless shell of width Rd�, the cross-section of which is shown
in Fig. 4b, as a rod, then P = qRd� and, consequently,

After substituting � and P from these relations into equality (2.28), we arrive at formula (2.27).
Pure torsion of a shell (T 0

11 = T 0
22 = 0, T 0

12 = s). In this case where there is zero variability in the peripheral direction,
that is, when the representations (2.22) hold, Eqs. (1.11) take the form

(2.29)

Fig. 4.
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It follows from the first equation of (2.29) and the condition for the shell to be in equilibrium in projections onto
the x-axis that Tx = 0. Hence, from relations (2.3), we obtain

(2.30)

When account is taken of relations (2.3), the second and third equations of (2.29) reduce to the form

(2.31)

On eliminating u and w from these equations using equality (2.30), we arrive at the equation

The non-trivial solution of this equation when v(0) = 0 has the form

and is possible when

(2.32)

At the same time, as can be seen from equality (2.30) and the first equation of (2.31), the displacements u and w

are given by the relations

(2.33)

if u(0) = 0.
It can be seen from these relations that the form of loss of stability accompanying torsion is a pure shear form.

3. Simplified versions of the geometrically non-linear theory of momentless shells and an analysis of the
possibility of describing pure shear forms of loss of stability in the case of different versions of loading

3.1. Non-linear theory of mean flexure

The so-called mean flexure theory of shells3 is the most frequently used version of the non-linear theory of thin
shells in practical applications. Within the framework of this theory the shear deformations of the middle surface are
determined using the formulae

(3.1)

and expressions for the flexural deformations of shells are used in the geometrically linear approximation.
When expressions (3.1) are used instead of relations (1.1) and (1.2), we can write equalities (1.4) in the form

(3.2)

while formulae (1.5) remain unchanged.
The equilibrium equations (1.9) are simplified by virtue of equalities (3.2). From them we obtain the linearized

equations of the perturbed state

(3.3)

in which the forces are determined using formulae (1.12) for Si3 and (1.13) for Tij.
With the aim of investigating the quality of the equations derived, we will now analyse the problems considered in

Section 2 which were formulated on the basis of these equations, starting out from the most general equations.
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3.2. External pressure

By virtue of equalities (3.2), supplemented with the equalities

instead of Eqs. (2.5), we shall have the simplified equations

(3.4)

where

When ∂/∂� = 0, it is easy to show that the bifurcation value of the load (2.9) and the shear forms of loss of stability
(2.10) and (2.11) are determined by the solutions of Eqs. (3.4).

If the functions appearing in Eqs. (3.4) are represented in the form

(3.5)

we arrive at the system of equations

(3.6)

Just a single bifurcation value of the load

(3.7)

follows from these equations when there is no variability of the functions in the axial direction whereas two bifurcation
values, determined using formulae (2.13) and (3.7), follow from the unsimplified equations and, moreover, p(2)∗ < p

(3)∗ .
Furthermore, it should be noted that formula (2.13), which was obtained in a rigorous formulation of the problem, has
a clear physical meaning, while the mechanism of the realization of loss of stability in the case of the functions u0 = 0,
w0 = −v0 = const, that is, when

(3.8)

and the bifurcation value of the load according to formula (3.7) do not lend themselves, in general, to any physical
explanation.

If we reject the assumption of zero variability of the functions U, V and W in the axial direction and represent the
solution in the form
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we arrive at the equations

(3.9)

It can be shown that a non-trivial solution of system (3.9) exists in the case of a bifurcation value of the load p,
which is determined using the formula

(3.10)

This result differs fundamentally from the results which follow from the analogous unsimplified equations and does
not lend itself to any physical explanation whatsoever.

3.3. Axial compression

Since equalities (3.2), supplemented by the equalities

hold within the framework of the model being used, then, in the case under consideration, instead of (3.4) we arrive at
the equations

(3.11)

In the case of zero variability of the functions in the peripheral direction, Eq. (3.11) take the form

(3.12)

It follows from the first two equations of (3.12) that

Hence, the last equation of (3.12) is transformed to the form

It can be shown that the general solution of the last equation, when the condition w(� = 0) = 0 is imposed, yields the
form of loss of stability

(3.13)

and the bifurcation value of the load (2.27).

3.4. Pure torsion

Within the model used for the forces, we have formulae (3.2), supplemented with the equalities
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and, using these, we can write the stability equations (3.4) in the form

(3.14)

It can be shown that the solution of Eqs. (3.14) for the case of zero variability of the functions in the peripheral
direction yields the bifurcation value of the load

(3.15)

which is twice as large compared with the value (2.32).

3.5. Equations corresponding to the use of kinematic relations in the incomplete quadratic approximation

If the simplified relation

(3.16)

is used to determine the shear deformation instead of (1.2), then, instead of formulae (1.4), we arrive at the formulae

(3.17)

for the forces in Eqs. (1.9), while formulae (1.5) remain unchanged.
By virtue of equalities (3.17), the forces occurring in the linearized equations of the perturbed state (1.1) will be

determined using the formulae

(3.18)

An investigation of the above equations showed that, in the case of external pressure and axial compression, they
lead to the same results as those indicated in Section 2. However, in the case of pure torsion, their solution leads, as
above, to formulae (3.15) and a bifurcation value s∗ which is twice as large as that found using formula (2.32).
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